Agile Development, Java, PHP, Programming

TDD: Checking the return value of a Stub

State verification is used to ensure that after a method is run, the returned value of the SUT is as expected. Of course, you may need to use Stubs on a test double or a real object to tell the object to return a value in response to a given message.

In Java, you declare a method’s return type in its method declaration, this means that the type of the return value must match the declared return type or otherwise you will get a compiler error. In PHP, for example, you dynamically type the return value within the body of the method. This means that PHP mocking libraries cannot check the type of the return value and provide guarantees about what is being verified.

This leads to the awkward situation where a refactoring may change the SUT behaviour and leave a stub broken but with passing tests. For example, consider the following:

Developer (A) creates 2 classes, Presenter and Collaborator:

class Presenter
{
    protected $collaborator;

    public function __construct(Collaborator $obj)
    {
        $this->collaborator = $obj;
    }

    public function doSomething()
    {
        $limit = 1;
        $stories = $this->collaborator->getStories($limit);
        // ...
        return $stories;
    }
}

class Collaborator
{
    public function getStories($limit)
    {
        return array();
    }
}

Then writes a test case:

class PresenterTest extends PHPUnit_Framework_TestCase
{
    // Behaviour verification
    public function testBehaviour()
    {
        $mock = $this->getMock('Collaborator', array('getStories'));
        $mock->expects($this->once())
            ->method('getStories')
            ->with(
                $this->logicalAnd(
                    $this->equalTo(1), $this->isType('integer')
                )
            );

        $presenter = new Presenter($mock);
        $presenter->doSomething();
    }

    // State verification
    public function testState()
    {
        $stub = $this->getMock('Collaborator', array('getStories'));
        $stub->expects($this->once())
            ->method('getStories')
            ->will($this->returnValue(array()));

        $presenter = new Presenter($stub);
        $data = $presenter->doSomething();

        $this->assertEquals(array(), $data);
    }
}

The Developer (A) uses a mock to verify the behaviour (a mockist practitioner) and a stub to verify the method worked correctly. The first test asserts that the expectation is met and the second one that the given condition is true. Finally, the Developer runs and watches all of the tests pass. Great!

The next day Developer (B) decides to makes some changes to the Collaborator class and return NULL if there are no stories:

class Collaborator
{
    public function getStories($limit)
    {
        $stories = array();
        if (count($stories) < 1) {
            return;
        }

        return $stories;
    }
}

The implementation of the method-under-test changed, it now returns a different data type, null instead of array. This means that our second test should fail, but it doesn’t. The test still asserts that the given condition is true, even though the return type is different. This is a problem. It means that our second test is unable to verify the correct state of the SUT (and its collaborator).

This is because most PHP mocking libraries are heavily influenced by Java (PHPUnit was originally a port of JUnit), and Java doesn’t have this problem. In PHP, the method’s return type is not a required elements of a method declaration, so developers can define it at run time and return whatever type they want.

The solution

You can use DocBlock annotations to make sure the data type of the returned value matches the one defined in the DocBlock. For this to work you need to set the return value using ReturnValue instead of PHPUnit_Framework_MockObject_Stub_Return. For example:

class PresenterTest extends PHPUnit_Framework_TestCase
{
    // State verification
    public function testState()
    {
        $stub = $this->getMock('Collaborator', array('getStories'));
        $stub->expects($this->once())
            ->method('getStories')
            ->will(new ReturnValue(array()));

        $presenter = new Presenter($stub);
        $data = $presenter->doSomething();

        $this->assertEquals(array(), $data);
    }
}

Now if you run the test it fails with the following error message:

PHPUnit_Framework_Exception: Invalid method declaration; return type required

The test also fails if the returned type doesn’t match the expected one defined in the DocBlock:

class Collaborator
{
    /**
     * @return int
     */
    public function getStories($limit)
    {
        // ...
    }
}

Error message:

PHPUnit_Framework_Exception: array does not match expected type "int"

Or, if you specify more than one data type in the DocBlock:

class Collaborator
{
    /**
     * @return array|null
     */
    public function getStories($limit)
    {
        // ...
    }
}

Error message:

PHPUnit_Framework_Exception: getStories cannot return more than one type, 2 given (array, null)

This solution is not perfect but should work in most cases.

Agile Development, Deployment, Java, Linux, PHP, Tools, Web Apps

Managing Multiple Build Environments

Last updated: 3 March, 2010

One of the challenges of Web development is managing multiple build environments. Most applications pass through several environments before they are released. These environments include: A local development environment, a shared development environment, a system integration environment, a user acceptance environment and a production environment.

Automated Builds

Automated builds provide a consistent method for building applications and are used to give other developers feedback about whether the code was successfully integrated or not. There are different types of builds: Continuous builds, Integration builds, Release builds and Patch builds.

A source control system is the main point of integration for source code. When your team works on separate parts of the code base, you have to ensure that your checked in code doesn’t break the Integration build. That’s why it is important that you run your unit tests locally before checking in code.

Here is a recommended process for checking code into source control:

  • Get the latest code from source control before running your tests
  • Verify that your local build is building and passing all the unit tests before checking in code
  • Use hooks to run a build after a transaction has been committed
  • If the Integration build fails, fix the issue because you are now blocking other developers from integrating their code

Hudson can help you automate these tasks. It’s extremely easy to install and can be configured entirely from a Web UI. Also, it can be extended via plug-ins and can execute Phing, Ant, Gant, NAnt and Maven build scripts.

Build File

We need to create a master build file that contains the actions we want to perform. This script should make it possible to build the entire project with a single command line.

First we need to separate the source from the generated files, so our source files will be in the “src” directory and all the generated files in the “build” directory. By default Ant uses build.xml as the name for a build file, this file is usually located in the project root directory.

Then, you have to define whatever environments you want:

project/
    build/
        files/
            local/
            development/
            integration/
            production/
        packages/
            development/
                project-development-0.1-RC.noarch.rpm
            integration/
            production/
        default.properties
        local.properties
        development.properties
        production.properties
    src/
        application/
            config/
            controllers/
            domain/
            services/
            views/
        library/
        public/
    tests/
    build.xml

Build files tend to contain the same actions:

  • Delete the previous build directory
  • Copy files
  • Manage dependencies
  • Run unit tests
  • Generate HTML and XML reports
  • Package files

The target element is used as a wrapper for a sequences of actions. A target has a name, so that it can be referenced from elsewhere, either externally from the command line or internally via the “depends” or “antcall” keyword. Here’s a basic build.xml example:

<?xml version="1.0" encoding="iso-8859-1"?>
<project name="project" basedir="." default="main">

    <target name="init"></target>
    <target name="test"></target>
    <target name="test-selenium"></target>
    <target name="profile"></target>
    <target name="clean"></target>
    <target name="build" depends="init, test, profile, clean"></target>
    <target name="package"></target>

</project>

The property element allows the declaration of properties which are like user-definable variables available for use within an Ant build file. Properties can be defined either inside the buildfile or in a standalone properties file. For example:

<?xml version="1.0" encoding="iso-8859-1"?>
<project name="project" basedir="." default="main">

    <property file="${basedir}/build/default.properties" />
    <property file="${basedir}/build/${build.env}.properties" />
    ...

</project>

The core idea is using property files which name accords to the environment name. Then simply use the custom build-in property build.env. For better use you should also provide a file with default values. The following example intends to describe a typical Ant build file, of course, it can be easily modified to suit your personal needs.

<?xml version="1.0" encoding="iso-8859-1"?>
<project name="project" basedir="." default="main">

    <property file="${basedir}/build/default.properties" />
    <condition property="build.env" value="${build.env}" else="local">
        <isset property="build.env" />
    </condition>
    <property file="${basedir}/build/${build.env}.properties" />

     <property environment="env" />
     <condition property="env.BUILD_ID" value="${env.BUILD_ID}" else="">
         <isset property="env.BUILD_ID" />
     </condition>

    <target name="init">
        <echo message="Environment: ${build.env}"/>
        <echo message="Hudson build ID: ${env.BUILD_ID}"/>
        <echo message="Hudson build number: ${env.BUILD_NUMBER}"/>
        <echo message="SVN revision: ${env.SVN_REVISION}"/>
        <tstamp>
            <format property="build.datetime" pattern="dd-MMM-yy HH:mm:ss"/>
        </tstamp>
        <echo message="Build started at ${build.datetime}"/>
    </target>

    <target name="test">
        ...
    </target>

    <target name="clean">
        <delete dir="${build.dir}/files/${build.env}"/>
        <delete dir="${build.dir}/packages/${build.env}"/>
        <mkdir dir="${build.dir}/files/${build.env}"/>
        <mkdir dir="${build.dir}/packages/${build.env}"/>
    </target>

    <target name="build" depends="init, test, profile, clean">
        ...
    </target>
    ...

</project>

Using ant -Dname=value lets you define values for properties on the Ant command line. These properties can then be used within your build file as any normal property: ${name} will put in value.

$ ant build -Dbuild.env=development

There are different ways to target multiple environments. I hope I have covered enough of the basic functionality to get you started.

Java, Programming, Python, Software Architecture

Java, C, Python and nested loops

Java has no goto statement, to break or continue multiple-nested loop or switch constructs, Java programmers place labels on loop and switch constructs, and then break out of or continue to the block named by the label. The following example shows how to use java break statement to terminate the labeled loop:

public class BreakLabel
{
    public static void main(String[] args)
    {
        int[][] array = new int[][]{{1,2,3,4},{10,20,30,40}};
        boolean found = false;
        System.out.println("Searching 30 in two dimensional int array");

        Outer:
        for (int intOuter = 0; intOuter < array.length ; intOuter++) {
            Inner:
            for (int intInner = 0; intInner < array[intOuter].length; intInner++) {
                if (array[intOuter][intInner] == 30) {
                    found = true;
                    break Outer;
                }
            }
        }

        if (found == true) {
            System.out.println("30 found in the array");
        } else {
            System.out.println("30 not found in the array");
        }
    }
}

Use of labeled blocks in Java leads to considerable simplification in programming effort and a major reduction in maintenance.

On the other hand, the C continue statement can only continue the immediately enclosing block; to continue or exit outer blocks, programmers have traditionally either used auxiliary Boolean variables whose only purpose is to determine if the outer block is to be continued or exited; alternatively, programmers have misused the goto statement to exit out of nested blocks.

What’s interesting is that Python rejected the labeled break and continue proposal a while ago. And here’s why:

Guido van Rossum wrote:

I’m rejecting it on the basis that code so complicated to require this feature is very rare. While I’m sure there are some (rare) real cases where clarity of the code would suffer from a refactoring that makes it possible to use return, this is offset by two issues:

1. The complexity added to the language, permanently.

2. My expectation that the feature will be abused more than it will be used right, leading to a net decrease in code clarity (measured across all Python code written henceforth). Lazy programmers are everywhere, and before you know it you have an incredible mess on your hands of unintelligible code.

But what’s more interesting is that the idea of adding a goto statement was never mentioned. Common sense perhaps?

Java, PHP, Programming

Is Groovy the next programming language in your toolbox?

Groovy offers the flexibility of PHP and the power and capabilities of Java. Groovy meets all the requirements: optional static typing, familiar syntax, runs on a VM, performs as well as Java and supports lots of hot buzzwords like closures and builders. If you are a PHP and/or Ruby developer, I’m sure you are going to love Groovy.

If you are interested in learning more about Groovy and Grails and what it has to offer to your developer toolbox, keep an eye on my blog for some groovy posts :)

Agile Development, Java, Open-source, Programming, Tools

10 reasons to switch from CruiseControl to Hudson

Ten things no one ever told you about Hudson:

  1. It’s extremely easy to install (unzip the file and that’s it)
  2. It can be configured entirely from its friendly Web UI (no XML required)
  3. It has an attractive dashboard with colourful and meaningful icons
  4. It’s extremely flexible
  5. It can be extended via plug-ins
  6. It offers a much better UI than CruiseControl
  7. It can execute Phing, Ant, Gant, NAnt and Maven build scripts
  8. It gives you clean readable URLs for most of its pages
  9. It has RSS, e-mail and IM integration
  10. It can distribute build/test loads to multiple computers

This tutorial guides you step-by-step through the fundamental concepts of Continuous Integration and Hudson. When you are done with this one-hour tutorial, you will understand the benefits of Continuous Integration as well as how to set up your environment.

Links

Java, Linux, Programming

Get groovy for better shell scripts

Eric Wendelin wrote:

I often use shell scripts to automate mundane, repeatable tasks on my computer. Since I’ve found Groovy, though, I have discovered a great way to make writing those scripts easier and more enjoyable. This is especially true if I have anything complex to do, and it saves me a LOT of time.

I couldn’t agree more. Also, I’m quite impressed how easy is to operate on an XML document with Groovy.

Get groovy for better shell scripts